1. Почему нужна нормировка показателя
  2. Типы показателей
  3. Нормировка униполярного показателя
  4. Нормировка биполярного показателя
  5. Особенности балльных шкал

1. Почему нужна нормировка показателя

Обычно выраженность некоторого качества пытаются описать числом. Чаще всего такое число х формируется как сумма баллов. Насколько это правомерно — вопрос другой. Мы же предположим, что такое число х получено и осмысленно.

Обычно х меняется от некоторого минимального значения xmin (отражающего отсутствие качества) до некоторого максимального значения xmax (крайняя степень проявления, наличия, выраженности, …).

Его получение решает проблему сравнения двух объектов, но только по этому показателю. Впрочем, и здесь дело не очень хорошо. Надо всегда помнить, в каких пределах меняется показатель. А эти диапазоны — самые разнообразные… Да еще и оценивать, насколько близко конкретное значение к краям диапазона или к его середине. В общем, чистая морока.

Если же речь идет о сравнении по двум различным показателям — дело совсем швах. Конечно, нельзя сравнивать качества непосредственно. Для этого сравниваемые числа должны быть безразмерными. А ведь именно показатель обычно интерпретируется как степень выраженности некоторого качества. И вот это сравнивать можно!!! Но для этого их следует привести к одной шкале так, чтобы начала и концы двух шкал совпадали.

Но почему только этих двух? Давайте сделаем такое преобразование для всех показателей! Оно и называется нормировкой (не путать с нормализацией!). После этого мы можем сравнивать разнообразные показатели, полученные различными методиками.

2. Типы показателей

При всем разнообразии числовых характеристик объектов (или респондентов) из них можно выделить два широких класса:

  • униполярные, выражающие только степень наличия (интенсивность, выраженность, …) некоторого качества;
  • биполярные, отражающие не только степень наличия качества, но и его «направленность».

3. Нормировка униполярного показателя

Давно сложилось в науке так, что величины нормируются на диапазон от 0 до 1.

Для этого функция преобразования y=f(x) должна обладать следующими свойствами:

y(xmin)=0; y(xmax)=1; dy/dx>0   (1)

Любая функция с такими свойствами м.б. использована для нормировки. Например, если xmax Infin, то можно выбрать функцию

Expmax

Легко видеть, что за счёт выбора соответствующей функции можно учесть разнообразные эффекты искажения оценок. Например, склонность респондента к крайним оценкам. При этом, возможно, следует применять для различных респондентов и различные функции преобразования, учитывающие особенности их личности, статуса и т.п. Примерные графики таких функций — на рис. 1.

Func1

Рис. 1. Графики функции нормировки

Наиболее часто применяется линейное преобразование:

Lin1   (2)

Если полагать, что увеличение х описывает как возрастание выраженности качества А, так и убывание степени некоторого другого качества В, то нормированной мерой качества В может служить просто разность y´=1–y. Таковы, например, родственные по смыслу качества ‘близость’ и ‘дистанция’. Их метризация выявляет плохо осознаваемую ранее, но вполне четкую дополнительность и даже противоположность.

4. Нормировка биполярного показателя

Обычно такой показатель представляет собой ‘склейку’ двух взаимопредполагающих и антонимичных униполярных качеств А и В.

Часто В есть просто отрицание А и наоборот. По такому принципу построены, например, шкалы семантического дифференциала. Однако, пары для такого дифференциала следует проверить по словарю антонимов (например, два антонима к слову «веселый» – «грустный» и «мрачный» – вовсе не являются синонимами).

Нормировка соответствующей величины предполагает выбор «положительного» направления оси y. В качестве такового произвольно выбирается тот из полюсов шкалы, увеличение интенсивности которого принимается как возрастание y. Противоположный полюс автоматически становится «отрицательным». Подчеркнем, что никакой модальности (аксиологической оценки) за этим нет — играть роль могут только сложившиеся смысловые стереотипы, но не более того.

Пусть величина х оценивает степень выраженности обоих качеств (с соответствующим обозначением, например, ‘очень люблю’ или ‘слегка ненавижу’). Нормировку можно проводить при помощи любой функции, удовлетворяющей условиям (1). В частности, это м.б. и линейное преобразование:

Lin2   (3)

Очевидно, что yPrin[–1; +1].

Обе формулы (2) и (3) описывают линейное преобразование вида y=k·x+b. Поэтому все статистические выводы относительно величин x и y полностью совпадают.

5. Особенности балльных шкал

При использовании балльной шкалы имеется несколько тонкостей, которые часто упускаются из виду:

  • Иногда нет ответов на все вопросы, относящиеся к данному показателю. Причины разные — ответ просто не дан, ошибка при внесении ответа или его кодировке, … Короче — имеются пропуски ответов.
  • Практически всегда балл приравнивается к номеру ответа среди прочих. И наименьший балл становится равным 1.
  • Хотелось бы использовать для некоторых вопросов ответ с числом градаций, отличающимся от остальных. Но тогда его вклад надо учитывать как-то по-другому.

При нормировке балльной шкалы надо всего лишь принять, что х = S, где S сумма набранных баллов по полученным ответам (а не заданных вопросов!). Соответственно, Smin и Smax — минимальная и максимальная суммы баллов, которые можно набрать при полученных ответах.

Если же градации для всех вопросов одинаковы, то число N — это как раз и есть число таких ответов, за которые начислены баллы. Тогда формула (2) примет простой вид:

Lin1b   (4)

Здесь bmin и bmax — наименьшее и наибольшее значения баллов. При этом у меняется в диапазоне от 0 до 1. Границы ‘0’ он достигает при всех ответах, равных bmin, а ‘1’ — равных bmax.

Для нормировки балльного показателя на дипазон [-1; 1] надо пользоваться формулой:

Lin2b   (5)

One Response to “Нормировка показателей”

  1. Gelena Says:

    понравилась статья в части возможности нормировки биполярных показателей.


Добавить комментарий

Заполните поля или щелкните по значку, чтобы оставить свой комментарий:

Логотип WordPress.com

Для комментария используется ваша учётная запись WordPress.com. Выход / Изменить )

Фотография Twitter

Для комментария используется ваша учётная запись Twitter. Выход / Изменить )

Фотография Facebook

Для комментария используется ваша учётная запись Facebook. Выход / Изменить )

Google+ photo

Для комментария используется ваша учётная запись Google+. Выход / Изменить )

Connecting to %s

%d такие блоггеры, как: